
By Nick Harley and Jason Fauchelle

Published by Raygun.com - www.raygun.com. © 2017 Raygun Limited - First Edition

All rights reserved. No portion of this book may be reproduced in any form without permission from the publisher,

except as permitted by copyright law. For permissions contact: support@raygun.com

The On-Call
Survival Guide
How to ensure your team is prepared

for when disaster strikes

mailto:support%40raygun.com?subject=

CONTENTS Introduction 3

 High availability 5

 Why being on-call is so important for software teams 6

 Culture of “uptime” 7

 Improvement & innovation 8

Working out your priority levels 9

 Critical outage 9

 Loss or degradation for subset 9

 Loss of minor functionality 10

 No customer-visible impact 10

 All others 10

How do you know when something went wrong? 11

 The system 11

 The application 13

 The business 16

 The individuals 16

On-Call Roles & Responsibilities 17

 Primary contacts 18

 Secondary contacts 18

 Teams & Rosters 19

 Rotations & Scheduling 20

 Paging Policies 21

 ChatOps 21

When The System Goes Down 23

 Alerting 23

 Triage 24

 Identification 24

 Investigation 24

 Resolution 25

 Postmortem 26

 Documentation 26

Other considerations 26

 Sleep deprivation 29

 Customer communications 30

 Affected customers 32

Final thoughts 33

Raygun.com The On-Call Survival Guide 2

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 3

Introduction

In today’s technology-driven world, almost every business is using software

to reach their customers.

This no longer applies to just businesses that offer technology solutions to

technically savvy buyers. This captures all sorts of companies, industries,

and sectors from small high street retailers to tech industry giants.

Over 2 billion people now have a smartphone and can use it to pull up

information in a heartbeat. We are more connected than ever before.

Without investment into search, responsive marketing sites, mobile apps,

online stores and up to date applications that perform well for end users,

companies that are slow out of the gate can find themselves outmaneuvered

by their competition.

If we take the example of Home Depot, the building supplies store has

historically had to consider the simple business model of a customer

entering a shop and handing over their hard-earned cash in exchange for

products. As technology has moved on, however, the Home Depot business

had to become a software company too.

As technology advanced, customers didn’t just use the Home Depot website

for information on store hours and locations, they wanted to purchase

products online too. Then, real-time stock level visibility for stores is

required; a mobile app, online ordering and store collection, delivery fleet

tracking and management. The list goes on.

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 4

As customers demand and expect to be able to have these options open

to them when interacting with a large business, demand needs to be

met. Without this innovation, customers would simply head elsewhere, to

competitors that provided a smoother interaction between the online and

offline world.

Over time, even a building supplies company has now morphed into a

huge tech giant, hiring and employing hundreds or thousands of technical

employees.

This is the case for the large majority of companies who have had to make the

shift from non-tech to heavy-tech reliance as software “eats the world”.

Just look at Dominos share price over time for another company that is

constantly pushing the boundaries of technology, yet their main line of

business revolves around cooking round discs of dough (with plenty of

toppings of course).

The “uptime” economy

Companies and businesses all over the world now have more demand

than ever before from consumers wanting 24/7 access, functionality and

information. Just a short outage can affect a brand’s reputation as well as

losing out on significant sales.

After Amazon’s homepage was down for 49 minutes in 2012, it was reported,

based on their $61.09 billion 2012 net sales this cost the company $116,229

in lost sales every minute. Just under $5.7M in total. On current annual sales

figures of over $100 billion, you could likely double that figure should history

repeat itself today.

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 5

Amazon is an extreme example but highlights the fact that downtime is a

costly business for all companies that have a reliance on software to serve

their customers and generate sales. It is, therefore, quite rightly feared and

mitigated against in every tech-oriented organization.

High availability

It is an inevitability that your company will at some point experience a

service disruption causing some level of downtime. It’s just a reality of

complex software systems that a bad release could cause considerable

negative effects or the service can go down entirely.

Nor can you plan for everything. Your application may experience high

traffic spikes or unexpected high volume usage from individuals stamping

up and down on your API with crazy numbers of requests.

These issues often have no warning. What separates the best from the rest

is how issues are managed and resolved within tech teams when things

do turn sour. Minimizing the impact down to the smallest numbers of

customers for the smallest amount of time is paramount.

How do you calmly address technical issues and ensure all users, your fellow

team members and your peers are delivered solutions, not further problems

or blind panic? Outages shouldn’t mean you are awoken at 3 am only to try

and solve problems in a cold sweat as the minutes tick by.

Not only are there many tools and services available at your disposal that

make issue management and team communication a breeze, common

practices leveraged by bleeding-edge tech companies can help keep

applications stable, reliable, and available at any scale.

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 6

We hope that this guide helps you feel more prepared and therefore

comfortable with being on-call by sharing insightful information on how you

can make outages (or planning for them) less of a thing to be feared and

part of a great on-call “culture of uptime” within your organization.

Why being on-call is so important for software teams

Any team that cares about producing software of quality that performs for

customers should know the importance of being on-call. Teams that do

not require engineers to be on-call (or rarely have incidents that require

immediate fixes) haven’t simply got to that position by chance.

These engineering teams have been able to build scalable, reliable, robust

software and infrastructure that can withstand various issues without falling

over entirely or descending into a spiral of the knock on effects. These

incidents may become critical events for teams that have not pre-planned

their resolution options.

Anyone who is on-call shouldn’t be getting into situations where members

of their team are unavailable for a critical service whilst senior management

are barking at you to ‘just fix it’.

Those put in this position often have no choice except to hijack repository

permissions and write patches just to stop the fire from spreading. Naturally

then comes the inevitable reprimands for such heroic acts. This messy and

anti-collaborative approach to being on-call can make engineers wary of the

responsibility entirely, and without the guardrails of a well-defined on-call

shift, this is what “no-on-call” organizations descend into.

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 7

In the large part, if things are set up in the right ways, being on-call is not a

difficult job. It’s really up to you and your colleagues to build processes and

systems to make it that way.

Even with a barrage of testing in staging or QA, you will still find problems

in your software that only exist in the production environment, and it won’t

be for lack of trying to unify fiddly things like configuration parameters or

runtime versions.

Culture of “uptime”

The trick to being on-call is to be effective and efficient. Resolving issues

quickly is your job. It’s on you to fix the issue swiftly before support requests

flood your customer support channel and social media lights up with angry users.

Colleagues and managers begin to angrily seek answers as infrastructure

queues start to spiral out of control impacting more and more users. You

need to be made aware of and recover from this problem as quickly as possible.

Unless you are a global operation with senior technical employees within

every time zone, naturally there are going to be periods within the day

when your core team is not sitting in front of their computers ready to fix

problems at a moment’s notice.

Approximately one-third of your day may be spent at your workstation, but

issues can tend to arise at the most inconvenient of times - During your

evenings and weekends or in the middle of the night.

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 8

For teams that are based in other areas of the world but serve a mainly US

based customer base, this problem is made even worse due to the time

differences. Your highest traffic volumes could be seen in the middle of the

night rather than your local timezone, so infrastructure falling over can lead to

problems needing to be fixed in nocturnal hours regularly.

Being on-call is not only important for your customers to ensure they are not

disturbed by outages or serious issues affecting their user experience, it’s

also hugely important for technical teams to have strict and well-organized

processes around issue management when disaster does strike.

How prepared would you be if your website unexpectedly went offline at 3 am

tonight?

Improvement & innovation

Being on-call shouldn’t be seen as an inconvenience or task that nobody wants

to do in the organization. Take pride in your team’s ability to solve issues

quickly, no matter what time of day or night they happen. Constantly strive to

improve not only the infrastructure and code base but the response time and

methods towards the recovery of disruptions as well.

Customers demand “life-improving” enhancements and experiences from the

products and services we build and support.

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 9

Working out your priority levels

Different priorities fall into different categories. You should know how to

recognize a critical outage. However, just because it’s critical, you may not

know how to fix. Critical outages sound terrible, but if a server has fallen

over it should be as simple as jumping in and fixing it quickly. This list is a

guideline to categorizing the different issues and knowing how urgently you

are expected to solve it, and if it needs to be an issue that is addressed by

the on-call team.

Critical outage

The highest priority incident is that which causes customer data loss.

For anyone on-call outside office hours, this is the kind of incident that

warrants immediate escalation to one or more engineers. During office

hours, all engineers stop what they are doing to focus on resolving the issue

immediately. Customer data loss can occur by all entry API nodes going

down, or by a server running out of memory with nowhere to put new

incoming data.

Loss or degradation for subset

One or more subsystems have gone down, causing customer data

processing to halt to some degree that customers will notice. No customer

data is lost however due to buffering the data in queues between

subsystems. You want to resolve this issue immediately as it can greatly

damage the user experience, and can cascade to further issues if not resolved.

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 10

Loss of minor functionality

A process has encountered an issue that is not part of the critical customer

data flow, but instead is responsible for tasks off to the side that may

be triggered by a user action such as generating a custom report. If left

unattended this can do no further damage to the system, but affects

customer experience and so will trigger an on-call alert and should be fixed

swiftly.

No customer-visible impact

A redundant system fell over and failed to recover. Due to redundancy, this

has no impact on the user’s experience beyond an ideally unnoticeable

degradation of processing data. This kind of incident wouldn’t raise any

alerts (unless of course, all related redundant systems fell over) and can be

resolved during office hours.

All others

A rare bug that is enough to knock down a system that quickly auto restarts

itself and in the end requires no on-call action. This is not enough to raise an

on-call alert, and just gets noted down to be fixed when it happens enough

to be annoying.

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 11

How do you know when something

went wrong?

Monitoring and detecting are the processes of using one or more systems

that run checks, receive results and checks them against configured

thresholds, triggering an incident.

Monitoring services are used in conjunction with an Incident Management

service to ensure the fastest path to recovery from a service disruption.

Based on configurable rules, the Incident Management system applies a

logical operation to determine a number of things:

• Is the incident critical enough to require action?

• what team or individual should be alerted to an incoming incident

• who within that group is currently on-call

• what method that individual is to be contacted

• perform automation to provide the first responder with valuable context

and resources to recover as quickly as possible

The system

System monitors tend to be more interesting to operations teams (i.e. Ops,

SRE, System Administrators)

No matter how prepared you think you are, there is always more that can

be done to prepare yourself for jumping into action when times require it.

We’ll assume you have the basics covered and have your laptop or a desktop

set up nearby with internet access (you’d be amazed how many developers

can be called upon and they yet don’t have the ability to work remotely from

anywhere other than their workstation!)

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 12

Ensure that things are set up and ready to go, a phone is close by and

charged, a laptop is also close by and running out of battery is not a risk

you’re unprepared for. If you’re stumbling around in the dark half asleep,

getting online should be as easy as opening the lid of your laptop.

As a habit, you should test your setup frequently. We’d even go as far as

saying you should incorporate a little test of your setup or checklist into your

going to bed routine. This will give you absolute confidence that when you’re

woken in the night, you will be ready to go.

Tip: Your mobile phone will have a do-not-disturb function which is

worthwhile enabling, even when on-call. Getting a good night’s sleep is

important and you don’t want to be woken by late night Facebook or Twitter

notifications. Just make sure you add any paging system phone numbers or

apps to the exceptions list so you do get on-call alerts.

Systems to be monitored include:

• Servers

• Switches

• Routers

• Instances

• Containers

• Clusters

• Databases

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 13

The application

Application monitors tend to be more interesting to developers.

The most important part of being on-call is having access to the information

you need in order to diagnose and fix issues. Without the relevant

information on hand, you’ll be floundering and wasting a lot of time.

Make sure the information is real-time or if in a document form then it is

kept up-to-date. Create a shared folder with your on-call team using a secure

online cloud storage provider. Store any relevant documents here and

ensure you have it synced to your local machine for ease of access. Some of

the types of documents you might want to create would be:

• An infrastructure list - List the servers in your environment and where

services are located. If there are secondary services for failover, then

list where are these located. IP addresses and names of servers can be

useful too when looking at logs, you may need to match one to the other

• Your on-call policy. This should include guidelines and expectations for

everyone who is on-call. Expected response times and guidelines on how

to classify the urgency of an issue. Who else to get involved when you are

unable to deal with the issue at hand

• A phone list of all people involved in the on-call roster or key personnel

responsible for production systems

• A troubleshooting or how-to guide where you document common issues

and how to resolve them

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 14

• A setup guide or checklist for new people going on-call. This should

include checklists of permissions needed for each system.

• How to configure firewall rules so you can access your environment

remotely and anything else that may be needed such as generating SSH

keys

Bookmark links to infrastructure dashboards that allow you to get a high-

level overview of your system health. Datadog is a great product that allows

you to build custom dashboards of both high-level and more detailed

system monitoring and metrics. They also provide a number of predefined

plug-and-play dashboards for commonly used systems such as AWS, Redis,

RabbitMQ, MySQL, Postgres and much more. Datadog can also be used to

configure threshold alerts and monitors based on metrics. These can be a

great addition to any existing monitoring you have in place or can provide an

early warning system for your software.

When trying to diagnose an issue, you want as much information at your

disposal as possible. Many standard products also come with monitoring

dashboards you can plug-in to get detailed information on a component

of your system. We’d recommend installing these and exposing them

externally via a secure channel so you can access them remotely when it

matters the most.

As with hardware preparation, software preparation is just as important.

Make sure that you can access the system dashboards from your remote

location. Make sure you have access to all the information and tools to be an

effective incident responder.

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 15

Before you join the on-call roster, get your remote location fully set up and

practice logging into each system to ensure it’s all ready to go. Make sure

your home on-call environment is comfortable, in particular, ensure you are

able to keep yourself warm during the night.

Any good operations person will want to lock down a production system

by minimizing who can access it and where they can access it from. This,

however, conflicts with the need to provide on-call support from a remote

location. So how do you provide access to production infrastructure for on-

call staff?

One option would be to set up a Virtual Private Network (VPN) to your office

network. Generally, there will be a trusted relationship between your place

of work and your production infrastructure. If you can provide a mechanism

that allows someone on-call to join the work environment then they can

utilize the existing trusted relationship to access production infrastructure

as though they were in the workplace.

Another option is to allow the on-call person direct access from their remote

location to the production infrastructure on a temporary basis. This would

generally involve setting up firewall rules to allow Remote Desktop (RDP) or

Secure Shell (SSH) connections through to your production servers from a

specified IP address. However, this is generally much harder to manage due

to the dynamic nature of IP addresses, that an IP address can change, or that

the on-call person may be remotely accessing the production infrastructure

from a shared location.

If you do allow this sort of access then ensure there is a good auditing policy

and there are procedures in place to reverse out any changes to the firewall

rules after the incident is resolved.

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 16

A third option that involves more work would be to develop or use a third-

party agent that is installed on production servers. This agent can be

configured to communicate with a known central server over a secure SSL

channel. The agent can then perform a limited set of tasks on behalf of an

authenticated user. This could include the ability to download, search and

tail log files, view config files, view and search Windows Event Viewer, restart

applications or services and track server and application changes.

The business

Business monitors tend to be more interesting to management.

What is the core service the company is providing and is that being

monitored? The company exists to make a profit. All metrics supporting

that goal are important. Still, if the company isn’t making money, senior

leadership should be aware and able to make necessary course corrections

to recover and improve the overall direction of the business.

With more companies moving to cloud and serverless, they care less about

CPU load or Memory consumption and more about “Is our service available

and working”. As a result, they monitor for business metrics that are as

important (if not more) than any other data measured (i.e. are we making

money?)

The individuals

Deciding who will be on-call on your own team can be a frustrating and

complex task at times. If you’re a CTO or Lead Developer, it can often be

expected that you are the one to be on-call. It’s your job to deliver on the

company goals with technology, and that includes doing whatever it takes to

keep the application running for customers.

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 17

After all, you’re going to be the one in the firing line should things be

falling over on a regular basis. But are others on the team able to assist

in recovering from a service disruption? Of course, no highly available

complex system survives a single point of failure, including a single person

responsible for the “uptime” of a service.

High-performing teams identify and establish roles as they shore up their

on-call duties. Clearly defined roles help teams to organize quickly and begin

on their path to service recovery.

On-Call Roles & Responsibilities

Regardless of if your organization has been structured by the breakdown

and assignment of responsibilities to numerous teams (Dev & Ops),

understanding who should be on-call can be extremely complex.

Some of your team may have children, dependant family members or other

commitments whilst others on the team don’t have any of these things to

work around. As much as it would be ideal to throw the on-call hospital pass

to your newest and youngest junior developers like most other jobs that you

feel keen to delegate, getting the company’s infrastructure back online in the

middle of the night may not be one task you want to delegate.

Sharing the responsibility around your fellow team members helps take the

onus off the same individuals having to deal with critical issues. Empathy is

at the heart of DevOps and load-balancing the responsibility of being on-call

is a sure fire way to begin building it.

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 18

Some incidents can be more swiftly resolved with more heads - such as

needing to shut down all processes across multiple machines that make up a

cluster, in order to restart it all up again.

Each member can focus on a subset of the processes. In these cases, the

Primary, or at least the person who acknowledges the incident should be

responsible for coordinating who does what. Having this responsibility logic

in place can help avoid individuals tripping over each other trying to take

charge in what they do. Including guidelines for how the primary contact

can coordinate these incidents in some kind of playbook is a good way to

educate anyone that will be a primary contact in future.

Primary contacts

At any point in time, there is always a Primary on-call developer who will be

the first to receive incident alerts. When it’s their turn, the Primary will be

the one responsible for keeping things under control outside of work hours.

It’s generally wise for the Primary to avoid going to movies (where you’d not

be able to, or not want to receive an alert) or go anywhere that you don’t

have quick access to any means of resolving an incident.

Secondary contacts

There is also always a Secondary on-call developer available for two main

purposes. Firstly in the event that the Primary misses an alert for whatever

reason, the Secondary acts as a backup to pick up the slack. Secondly, high

priority incidents are best managed by multiple engineers, so the Secondary

is the go-to engineer for immediate assistance. As such, it’s best for the

Secondary to be readily available at all times just like the Primary.

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 19

Teams & Rosters

Even if the structure of your teams are divided into “developers” and

“operations”, delegating the on-call responsibilities to more across all teams

is the best way to make sure that on-call responsibilities are shared, tribal

knowledge is disseminated, empathy is built, and problems are solved faster.

Creating a roster amongst the wider team of who is on-call, for what types

of services or issues, as well as when and who else is available, is where you

should start.

Having multiple Subject Matter Experts (SME) from various domains on-

call together helps to spread vital information and expertise across teams.

Gaining a deeper knowledge of the code and infrastructure happens

naturally as on-call responders are alerted to, investigate, diagnose, and

resolve issues as a team. This type of collaboration and response leads to

building really high-performing IT teams. But it all starts with building a

roster for your teams.

Here is a template you can print out for allocating team members to on-call

duties.

DOWNLOAD TEMPLATE

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 20

Rotations & Scheduling

At Raygun, we have a rotating schedule of several on-call developers that

will either be a Primary or a Secondary, one week at a time. Each developer

will first be a Secondary for a week, before then becoming the Primary the

following week, then having a break until their turn comes back around.

The length of an on-call shift will vary for different organizations. You want

to pick a routine that will work best for your team. If you have developers all

around the world, you may be able to take advantage of this by maximizing

how much on-call work is done during daylight. Eight or twelve-hour shifts

are common for this. We recommend that on-call shifts are no longer than

two weeks to avoid exhaustion and to better share the load, giving each

on-call developer a good balance between gaining on-call experience and

having a break.

One week shifts work well, as we can then have an on-call hand-off meeting

once per week immediately after the usual weekly team meeting. At on-

call meetings, the Primary lists the incidents that occurred, we discuss any

actions that we want to take throughout the week to mitigate or resolve

commonly occurring incidents, and finally make sure everyone knows who is

Primary and Secondary.

The time at which hand-off occurs is also important to consider. Our on-

call hand-off occurs first thing Monday morning during work hours, which

happens to coincide with our weekly meeting. At the very least, handing

off during work hours is a wise move. Whatever schedule you decide on,

keeping things as consistent as possible makes it easy to remember when

it’s everyone’s turn.

https://raygun.com/?utm_source=software-intelligence-ebook
http://raygun.com

Raygun.com The On-Call Survival Guide 21

Paging Policies

As mentioned previously, the current Primary will be the first to receive

incident alerts. Upon receiving an incident alert, the Primary must then mark

the incident as acknowledged, and then set to work on resolving the issue.

In the case that the Primary misses the alert, you don’t want the issue to just

sit there. Instead, the incident will automatically escalate to Secondary if it

remains unacknowledged for a short amount of time. You want this amount

of time to be long enough for the Primary to acknowledge it, but short

enough for potentially critical issues to not be left for too long.

In the unlikely event that something happens to the Primary after

acknowledging, such as stumbling down the stairs or dozing off, the incident

will become unacknowledged after some time and then escalated to

secondary if not re-acknowledged.

ChatOps

Issue management and resolution don’t need to involve panic, blame and

miscommunication. The days of scrambling to resolve a problem in a cold

sweat are behind us.

If teams can embrace ChatOps within their own organizations and automate

many processes with the use of bots, third-party plugins and tools, they

stand to make big gains in the efficiency of their wider team, and at the

same time, make the management of issues in their software applications

stress free, collaborative and fully transparent.

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 22

It’s one thing to be alerted to an issue, that’s just the notification part, but

without the diagnostic details about the problem, we can spend a whole

bunch of time just trying to work out the cause whilst our users continue

to see problems, support queues start to fill up and the issue grows into a

major company-wide incident.

If we can get this information immediately at the time the incident

notification comes through, fixing and debugging can be done at record

speed and your whole company can benefit, as well as your end users.

Many developers may automatically assume this only extends to servers

falling over, database timeouts and more, but it can also include production

errors your users are encountering every day. If you knew that a recent

update has broken your billing system and customers couldn’t pay you,

surely you’d be scrambling to fix that pretty quickly!

If you already use team chat applications in your business, you might already

have several pieces needed to get an awesome issue management workflow

operational, connecting these pieces together can create a world-class

incident management workflow and ensure our entire team is following

along from the first alert to resolution.

Read the complete guide to ChatOps in our ebook

https://raygun.com/?utm_source=software-intelligence-ebook
https://raygun.com/chatops

Raygun.com The On-Call Survival Guide 23

When The System Goes Down

Everyone owns and is responsible for the application code as well as the

infrastructure and its availability. The overall service is where our focus is.

Customers or end users ultimately don’t care who is responsible for what.

They only know that the service they are attempting to use isn’t behaving as

expected or is completely unavailable, and that’s a problem for them.

What is important for organizations is that anomalies or trends towards

an imminent problem should be monitored and alerted to as quickly as

possible.

Engineers and system administrators who may be solely responsible for

infrastructure should be part of regular on-call rotations. Everyone owns

and is responsible for all of it.

Alerting

Based on monitor status, an alert will be sent to the current Primary when

enough has gone wrong to require attention. At Raygun, we have a simple

scheme in where an alert will be triggered when any two monitors are

tripped. The monitors are set up in a way that any real issues will always

cause two monitors of some kind to trip.

If a process falls over, then that’s one monitor. The fact that the process has

fallen over means that the queue that the process is responsible for will start

building up which will trip another monitor.

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 24

If a process stalls or slows down, then again the queue will build up and trip

2 monitors at different thresholds. This simple scheme helps to weed out

false positives. If a process is knocked over, it can usually auto restart a little

while later. Sometimes extraordinary load could trip a queue monitor for

example.

Triage

Regardless of if an incident occurs during office hours or not, it’s best for the

current Primary to resolve any issues that occur. This simple logic removes

the question of who should fix the issue during office hours, and also gives

the current Primary the opportunity to fix issues they’ve never resolved

before - useful experience to have during a 3 am crisis. If you absolutely

don’t know what to do, don’t be ashamed to escalate the incident or ask for

help, as long as the issue is resolved and you learn what to do for next time.

Identification

This is the process of figuring out what’s gone wrong. If you’ve set up the

monitors well, then simply the name of the monitors that triggered an alert,

or any description attached to them will be enough to point you in the right

direction.

Investigation

Sometimes you may need to do further investigation to aid in resolution.

This may involve double checking any customer facing aspects related to

the incident in order to update a public status page. Another step may be to

check related dashboards to drill down on the specifics of what’s gone wrong.

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 25

If the incident that has occurred has never happened before and hence

no documented resolution procedures are applicable, plus if any generic

procedure such as restarting a server or process does not work, it’s always

good to start by asking “What has recently changed”.

Resolution

As with most things in life, communication is a very important part of

resolving incidents. At Raygun, we set up a single Slack channel to pipe

monitor trips and incident alerts, and then we send notes about everything

that we check, attempt or do throughout the resolution of an incident. Keep

Slack open in a separate window or device so that you can quickly jump

between sending a note and performing on-call resolution procedures.

When there are multiple hands on an incident, it’s necessary to know who’s

going to do what, and what’s been done. If you escalate an incident to

Secondary, they’ll be grateful for anything you’ve noted down so they don’t

waste time repeating any investigation from scratch. Then right at the end

of resolving an incident, all the notes you’ve sent creates a timeline that is

useful for writing up a report later on.

New never before seen scenarios are generally caused by something that

has recently changed in an otherwise stable system. A change could be a

recent deployment, a server being replaced with a new one, a process config

change, a new customer who heavily uses your system or many other things.

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 26

Postmortem

After the incident is resolved, or while waiting for monitors to go green

again, it’s good to do a quick further investigation into what caused the

issue. This could include looking at exceptions logged to an exception logging

service and identifying anything related. Or checking any metrics history to

spot anything that changed such as memory and CPU usage on the related

servers.

Documentation

An organized timeline of what happened and what actions were taken

should be written up during the next business day for examination. Writing

down notes in Slack while investigating and resolving the issue really helps

out here.

This write-up can then be discussed to brainstorm ideas for improvements

to monitors, metrics, logs or exception reporting that would make incidents

of this nature easier to resolve. Ideas for on-call developers to do things

differently that will speed up incident resolution, or ideas that will prevent

the issue happening in the future. If the procedure for resolving this incident

has not been documented, then now is a great time to add it to the playbook

while it’s fresh in your mind. Or if it has been documented, update it with

any resolution improvements you’ve discovered.

https://raygun.com/?utm_source=software-intelligence-ebook
https://raygun.com/platform/crash-reporting
https://raygun.com/platform/crash-reporting

Raygun.com The On-Call Survival Guide 27

Other considerations

Building a culture of on-call is important.

Without complete buy-in from all teams and individuals, the response time

to both major and minor incidents will increase. In most cases, a disruption

of service is costing the company real money. The longer it takes to recover

from a problem, the harder impact it has on both customer or user

sentiment and the bottom line.

It’s important that your team is paid for their time whilst on-call, otherwise,

there isn’t much incentive for doing so for employees.

My last company is notorious for official-unofficial on-call duties.

You must remain within 30 minutes of the office, be near your cell

phone and sober, 24x7. Because there is no official policy, there was

no rotation, so technically I was always on-call. Their official stance on

compensation is that salaried employees can’t get overtime, and it’s

covered by the annual bonus anyway. Yep, unlimited on-call & overtime

covered by a ~7% bonus that pays out about 50% of the time. I was once

out of the country on a statutory holiday and didn’t answer my personal

cell phone (roaming would have killed me), which caused me to get

reprimanded and lose my bonus for the entire year. After some back

and forward I quit soon after.

- Grecy

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 28

I worked for a small company with a >25 person IT team once, and

everyone participated in the on-call. When you were on-call, you were

on-call for the entire department. I worked IT security, but I was on-call

for networking, servers, code, database, and even power outages. The

shifts were for two weeks straight and were non-transferrable, so we

couldn’t trade off. We needed to be sober, ready to go any time of day

or night, and able to be on-site at any of the locations around the city

within half an hour. Even if the phone rang at 3am. I quit after seven

months. I wasn’t getting paid nearly enough to go through that.

- Freehunter

Senior staff must ensure that being on-call as an employee is seen as a task

that is respectfully compensated in your organization and something given

to engineers as a sign of trust, rather than a non-incentivised tasks that the

team has to do alongside their day to day jobs.

Teams that do not reward staff for on-call hours, seeing it as a task that

employees should be doing anyway, may be thinking they are trimming

costs or encouraging responsibility, but they stand to lose a lot more when

employees find on-call a thankless task, experience burnout, or leave for

better deals elsewhere.

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 29

Sleep deprivation

Copious amounts of coffee and Red Bull may get you through, but you’re

going to crash at some point when the caffeine wears off.

Often the times you can’t sleep are when you know you may have to get

up in the middle of the night. This apprehension could come from a lack

of preparedness for incidents that may occur. If you are confident that you

have things covered when alerted to issues in the middle of the night, you

may find it easier to relax and get the hours of sleep you need.

You shouldn’t treat being on-call any differently to your normal routine.

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 30

Should you need to be awake fixing issues during the night, ensure that

you allow some time to recover. It’s all too easy to be awake in the early

hours and decide to roll on through a normal workday - don’t do it! Your

organization should have expectations in place to allow you time to come in

late, or leave early to get some rest. Sleep deprived staff members who are

there in body, but not in mind due to lack of sleep may do more harm than

good. Organizations need to reward staff with acceptance of time to recover

from on-call incidents or face employee burnout.

Very few people can stay awake for 24 hours and even when they stay

awake, their mind really loses problem-solving skills. Drivers who are sleepy

simply hit other cars. Accountants who are sleepy, simply make mistakes in

their calculations. Also, many programmers when sleepy, write less

quality code.

Would you let a severely jet-lagged developer loose on your infrastructure?

Probably not, so don’t expect staff to be putting in a full day at the office if

they’ve spent their nights fighting fires.

Customer communications

As organizations strive to become more successful and grow user bases

and customers exponentially over time, such success can also bring more

complexity and consequences when outages occur.

It’s a relatively simple fact that the more people relying on your service, the

more will be affected when it is unavailable. In November 2015, Slack, the

hugely popular team chat application suffered an outage for approximately

two and a half hours.

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 31

I myself remember it vividly as our team’s communication ground to a halt

and everyone was asking ‘Is Slack down?’. Suddenly a service we relied upon

(probably more so than we realized) was unavailable, and it wasn’t until it

suddenly wasn’t there did we find a sense of frustration.

This kind of incident is something that teams try to minimize as much as

possible. It’s the entire reason for the creation of this guide, but in the

case of Slack, almost every tech news site was covering the outage, social

media was blowing up with people commenting on it. The influx on their

support team was probably just as concerning as the outage itself for their

operations teams. Communication to users on what is happening is so

important in order to keep customers informed.

Depending on your audience, managing the social media fallout can be

tricky. If your customers do not tend to be heavy social media users, then

things could be limited publicly. On the other hand, if your user base is

heavy social media users, an outage could lead to a lot of publicly visible

information needing to be addressed.

Your marketing or support teams may be the ones in your organization that

manages the social media accounts, and having to pass through up to date

technical information that informs users that the issue is being worked upon,

may lead to inaccurate or plain wrong information being given publicly. The

ability for those on the front line of things to manage announcements is

something all teams should think about.

If you are on-call and responding to a major outage in the middle of the

night, other team members may not be available, so alongside fixing the

issue, on-call teams need the tools available to them to communicate the

status of issues themselves.

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 32

Many people seem to want to head straight to social media when they have

issues with a service they are relying upon. Usually, because they feel they

might be able to skip or avoid any support queue. This is often a problem

for software teams, as many times the people who monitor social media

channels still need to find answers with internal teams before they can

respond, yet customers still want to cram detailed support requests into 140

characters. With posts being public and visible to others, organizations feel

obliged to respond in a timely manner.

You can minimize public backlash for outages and issues if you have a plan

and team education in place. Teams must think about these situations

and put the tools in place before they occur, rather than confusion and

inaccessible team members stopping the right information getting to

customers quickly.

Affected customers

I had an email from a company recently that apologized profusely for their

recent period of downtime. They were so sorry that they had let me down.

They were going to try harder in future and hoped that this kind of incident

wouldn’t happen again.

I had no knowledge of this outage, I wasn’t using the tool at the time it

occurred, so if they had not told me of their outage, I wouldn’t have known

otherwise.

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 33

Although I can commend this company for being so transparent about the

outage, all it did was damage my view of the reliability of their service and

confidence in their brand. Suddenly my views of them had been lowered,

and completely unnecessarily. In today’s data-driven world, there is honestly

no need for this to happen.

Monitoring your applications with error and crash reporting software or

having customer analytics services attached can have many associated

benefits rather than just what they are fundamentally designed for. Many

services that can monitor affected users for specific errors and crashes or

poor user experiences can allow you to contact only users that have been

affected by a bug or underlying issue. Tools that can show users that logged

in between specific time periods can also be used to build segments and

cohorts of users.

By pulling out these segments of users and then those email addresses

handed off to marketing or support, we need only communicate recent

outages to those that were impacted, saving us having to notify our entire

user base and risk a wider loss of confidence than is necessary.

Final thoughts

Having redundant systems in place is a great way to minimize on-call

incidents. If a single instance of a system is enough to handle the load in

a reasonable manner, then an alert does not need to be raised unless all

instances of that system goes down. This way, if a redundant system goes

down that doesn’t affect end users, an alert isn’t going to wake up on-call

developers during the night unnecessarily.

https://raygun.com/?utm_source=software-intelligence-ebook
https://raygun.com/
https://raygun.com/platform/user-tracking
https://raygun.com/platform/user-tracking

Raygun.com The On-Call Survival Guide 34

Each morning, developers can check if any redundant systems went down

and start them back up during office hours. Further investigation should be

done to identify the cause of redundant outages to see if any work can be

done to prevent or minimize them occurring in the future.

Fewer incidents waking up developers during the night means they can get

better sleep and do more work during the day. Cost, however, needs to be

considered when setting up redundant systems.

As new types of incidents occur, it’s good to keep updating a playbook

of resolution procedures. This is useful for existing on-call developers to

reference while resolving incidents that they have never done, or not done

for a while. This is also extremely valuable when onboarding developers to

the on-call roster.

Everything should be automated where possible. The resolution of some

issues can be automated to avoid on-call incidents occurring. Another thing

that can help with on-call procedures are tools in the form of a console

application or a page in an admin site that does common investigative work

for you. It’s important not to rely on these things too much in the case that

issues occur within them. Make sure that training and documentation are

in place for on-call developers to perform low-level manual operations if

necessary.

A useful chunk of knowledge that on-call developers should learn is where

each process runs and which processes communicate with another. If a

cluster system needs to be restarted, you may want to shut down other

systems that heavily query it so that there is not so much load on it while it’s

being restarted.

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 35

The cause of an issue may sometimes not be within the system that

tripped the monitors, but instead, originate from another system that

communicates with it. Knowing how each system communicates can help

with investigating the cause of an issue. Just like any on-call knowledge, such

communication infrastructure should be documented, ideally in a diagram

form that is easy to digest, with notes about the form of communication and

structure of payloads.

Any work during work hours that will help minimize on-call incidents should

be high priority. Not only does this mean fewer issues for your users, but

also means better sleep for on-call developers which can result in better

work during the day or avoid needing to take a bit of time off to recover.

All code that developers write should be well reviewed by at least one other

developer. Code changes should be as minimal as possible to minimize the

risk of breaking anything, but sometimes a colossal code change is required

when changing/migrating the way that systems work.

Such change could include changing the way data is stored, or the way

messages are communicated between multiple processes.

When these kinds of changes occur, it is recommended to schedule the

deployment of these changes while the lead developer of those changes

is the Primary, or change the on-call schedule so that the lead developer

is Primary for a while after the change is deployed. The lead developer will

know all the intricacies of the changes and is better equipped to resolve any

early issues.

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 36

If the on-call developer does not know the extent of the code changes well

and is woken up to resolve a crisis, the lead developer could feel guilt of

causing someone else to be woken for the issue, and the on-call developer

could feel angry about the situation. This can cause tension in the on-call

culture which you want to avoid wherever possible.

Survival

We hope this guide has been helpful, or at least given you a few ideas for

how you can survive on-call activities in your own organization.

The key is to stay organized, be fully set up and prepared before the time

comes to fix issues and document processes as much as possible.

Reliable software for end users is something all teams strive for, but it’s no

coincidence that high availability services are ‘lucky’ to stay online and not

experience severe outages.

It comes down to your team, and the processes you have in place.

So be prepared if you want to survive any major incidents without end users

noticing.

https://raygun.com/?utm_source=software-intelligence-ebook

Raygun.com The On-Call Survival Guide 37

Book a demoTake a free trial

Try Raygun free for 14 days Take a few minutes to see the magic!

Learn with Raygun’s eBook library

Check out these free ebooks published by Raygun

https://raygun.com/?utm_source=software-intelligence-ebook
https://raygun.com/book-demo?utm_source=on-call-ebook
https://raygun.com/book-demo?utm_source=what-is-software-intelligence-ebook
https://raygun.com/?utm_source=on-call-ebook
https://raygun.com/?utm_source=what-is-software-intelligence-ebook
https://raygun.com/software-intelligence-ebook
https://raygun.com/javascript-error-monitoring
https://raygun.com/chatops
https://raygun.com/error-monitoring-drives-innovation
https://raygun.com/error-reporting-enterprise

	Introduction
	Introduction
	
High availability
	
Why being on-call is so important for software teams
	
Culture of “uptime”
	Improvement & innovation

	Working out your priority levels
	Critical outage
	Loss or degradation for subset
	Loss of minor functionality
	No customer-visible impact
	All others

	How do you know when something went wrong?
	The system
	The application
	The business
	The individuals

	
On-Call Roles & Responsibilities
	Primary contacts
	Secondary contacts
	Teams & Rosters
	Rotations & Scheduling
	Paging Policies
	ChatOps

	When The System Goes Down
	Alerting
	Triage
	Identification
	Investigation
	Resolution
	Postmortem
	Documentation

	
Other considerations
	Sleep deprivation
	Customer communications
	Affected customers

	Final thoughts

